Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry.

نویسندگان

  • Dayong Qiu
  • Shing-Ming Cheng
  • Laryssa Wozniak
  • Megan McSweeney
  • Emily Perrone
  • Michael Levin
چکیده

Left-right asymmetry is a crucial feature of the vertebrate body plan. While much molecular detail of this patterning pathway has been uncovered, the embryonic mechanisms of the initiation of asymmetry, and their evolutionary conservation among species, are still not understood. A popular recent model based on data from mouse embryos suggests extracellular movement of determinants by ciliary motion at the gastrulating node as the initial step. An alternative model, driven by findings in the frog and chick embryo, focuses instead on cytoplasmic roles of motor proteins. To begin to test the latter hypothesis, we analyzed the very early embryonic localization of ciliary targets implicated in mouse LR asymmetry. Immunohistochemistry was performed on frog and chick embryos using antibodies that have (KIF3B, Polaris, Polycystin-2, acetylated alpha-tubulin) or have not (LRD, INV, detyrosinated alpha-tubulin) been shown to detect in frog embryos only the target that they detect in mammalian tissue. Immunohistochemistry revealed localization signals for all targets in the cytoplasm of cleavage-stage Xenopus embryos, and in the base of the primitive streak in chick embryos at streak initiation. Importantly, several left-right asymmetries were detected in both species, and the localization signals were dependent on microtubule and actin cytoskeletal organization. Moreover, loss-of-function experiments implicated very early intracellular microtubule-dependent motor protein function as an obligate aspect of oriented LR asymmetry in Xenopus embryos. These data are consistent with cytoplasmic roles for motor proteins in patterning the left-right axis that do not involve ciliary motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis.

To gain insight into the molecular mechanisms underlying the control of morphogenetic signals by H+ flux during embryogenesis, we tested Fusicoccin-A (FC), a compound produced by the fungus Fusicoccum amygdali Del. In plant cells, FC complexes with 14-3-3 proteins to activate H+ pumping across the plasma membrane. It has long been thought that FC acts on higher plants only; here, we show that e...

متن کامل

Application of magnetic resonance spectroscopy for evaluating metabolic alteration in anterior cingulate cortex in Alzheimer's disease

Introduction: Alzheimer’s disease (AD) is the most common cause of dementia worldwide. Mild cognitive impairment (MCI) is often the prodromal stage to AD. Most patients with MCI harbor the pathologic changes of AD and demonstrate transition to AD at a rate of 10–15% per year. Accumulating evidence indicates that the asymmetry changes of left and right brain have happened in the early stage of A...

متن کامل

Serotonin Signaling Is a Very Early Step in Patterning of the Left-Right Axis in Chick and Frog Embryos

BACKGROUND Consistent left-right (LR) asymmetry is a fascinating problem in developmental and evolutionary biology. Conservation of early LR patterning steps among vertebrates as well as involvement of nonprotein small-molecule messengers are very poorly understood. Serotonin (5-HT) is a key neurotransmitter with crucial roles in physiology and cognition. We tested the hypothesis that LR patter...

متن کامل

The embryonic origins of left-right asymmetry.

The bilaterally symmetric body plan of vertebrates features several consistent asymmetries in the placement, structure, and function of organs such as the heart, intestine, and brain. Deviations from the normal pattern result in situs inversus, isomerisms, or heterotaxia (independent randomization), which have significant clinical implications. The invariance of the left-right (LR) asymmetry of...

متن کامل

Loss of the ciliary kinase Nek8 causes left-right asymmetry defects.

A missense mutation in mouse Nek8, which encodes a ciliary kinase, produces the juvenile cystic kidneys (jck) model of polycystic kidney disease, but the functions of Nek8 are incompletely understood. Here, we generated a Nek8-null allele and found that homozygous mutant mice die at birth and exhibit randomization of left-right asymmetry, cardiac anomalies, and glomerular kidney cysts. The requ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental dynamics : an official publication of the American Association of Anatomists

دوره 234 1  شماره 

صفحات  -

تاریخ انتشار 2005